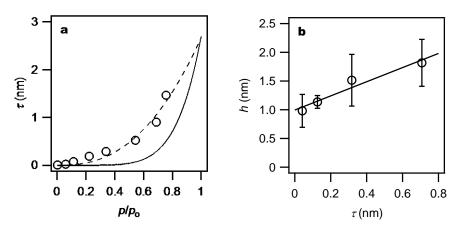
SUPPORTING INFORMATON


Opposing Effects of Humidity on Rhodochrosite Surface Oxidation

Chongzheng Na,^{1, 2, *} Yuanzhi Tang,² Scot T. Martin,² and Haitao Wang¹

¹Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556

²School of Engineering and Applied Sciences & Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138

*Corresponding author: chongzheng.na@gmail.com

Figure S1. (a) The thickness of condensed water layer and (b) its correlation with nanostructure thickness. The circles in a are experimental data for calcite from Ref. 3. The dashed curve is the least-square fit to the Freundlich isotherm $\tau = (2.7(\pm 0.5)(\text{p/po})^{2.5(\pm 0.5)}, \text{ R}^2 = 0.96)$. The solid curve in a is $\tau = 2.7(\pm 0.5)(\text{p/po})^{6.0(\pm 0.4)}$ for rhodochrosite, where the pre-exponential factor of $2.7(\pm 0.5)$ nm is taken from the Freundlich isotherm for calcite. The power of $6.0(\pm 0.4)$ is obtained from fitting the data in Figure 3c to Eq. 3. The solid line in b is a linear fit.