
SUPPORTING INFORMATION 

Mechanism and Kinetics of Cyanogen Chloride Formation from the Chlorination of Glycine 

Chongzheng Na and Terese M. Olson 

 

Estimation of Membrane Diffusivity and Calibration Parameters 

The process separating CNCl from aqueous solution was modeled as pervaporation (1) with the 

tubular membrane being a hollow rod (Figure A-1) (2): 
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Boundary Conditions: C(r = ri, t) = αCa(t)  (A-2) 

   C(r = ro, t) = 0   (A-3) 

 Initial Condition: C(r, t ≤ td) = 0   (A-4) 

where C = CNCl concentration in the membrane, α = partitioning coefficient between aqueous solution 

and the membrane, Dm = diffusion coefficient in the membrane, r = radius from the center of tubular 

membrane with ri and ro being inner and outer radii, t = reaction time, Ca = bulk concentration in 

aqueous solution, and td = time needed to pump reaction solution from the reactor to the membrane. The 

number of molecules measured in each time interval,τ, during which the mass spectrometer conducts a 

measurement is: 
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with l = length of tubular membrane and ϕ = mass spectrometer multiplier current gain. 
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Figure A-1.  Schematic diagram of the membrane introduction tubing. 
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An analytic solution of Equations (A-1) – (A-4) is available (3) for the case of a constant solution 

concentration, Ca, such as when the MIMS is applied to analyze a standard solution, as follows: 
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where n = 1, 2, 3, … (practically, n = 5 was used in calculation), J0 = Bessel function of the first kind of 

zeroth order, U0(rωn) = J0(rωn)Y0(roωn) – J0(roωn)Y0(rωn) with Y0 = Bessel function of the second kind 

of zeroth order, ωn = the roots of U0(riωn) = 0. Combining Equations (A-5) and (A-6) gives the observed 

MIMS signal intensity: 
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As t → ∞, steady state is attained in which 
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= , was readily estimated by measuring the steady-state 

intensity of a set of calibration solutions with known Ca’s. Normalizing I by Iss gives: 
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Fitting Equation (A-9) to the experimental data of 
( )
ss

I t
I

 vs. t provided estimates of Dm and td.  

An example obtained with cyanogen chloride standards at pH 7.0 and 25oC is shown in Figure A-

2. In Figure A-2(a), the regression using Equation (A-9) provided the estimates of Dm = 3.5(±0.1)×10-10 

m2/s and td = 28.8(±0.6) s. (The values in parentheses here and throughout the Supporting Information 

are standard deviations.) In Figure A-2(b), the steady-state MIMS observation Iss and CNCl aqueous 

concentration Ca were fitted to a linear relation as depicted by Equation (A-8). The slope of the linear 
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regression was estimated as σ = 1.59(±0.01)×10-8 M⋅(ion count)-1. The estimates of Dm, td, and σ were 

shown to be independent of from pH 4 to 8 and from 15 to 35oC (4).  
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Figure A-2.  (a) Estimation of Dm and td. The experiment, cond

7.0 and 25oC, is represented in gray. The black line is the 

Calibration curve of cyanogen chloride according to Equation (A

 

 

Mass Transfer Corrections in Kinetic Experiments 

When Ca(t) varies, as it does over the course of a reaction,
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Rearranging Equation (A-10) with ln( / )
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Replacing C(r,t) with C'(r,t) using Equation (A-11), Equations (A-1) – (A-5) become: 
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These are Equations (1) – (5) in the main text. With an initial guess of Ca(t), I(t) was calculated by 

solving Equations (A-12) to (A-16) using Matlab 6.5 (student release). The calculated profile, I'(t), was 

compared with the experimental intensity measurements and the difference between I'(t) and I(t) was 

used to adjust Ca(t). I'(t) was recalculated and the process was re-iterated until the difference between 

I'(t) and I(t) became negligible. Upon minimizing the difference, an estimate of the aqueous 

concentration Ca(t) was obtained. The final nth estimate, Ca(t)n, was assumed to equal to the actual 

reactor Ca(t). The initial guess for Ca(t) was obtained from Ca(t) = σI(t). 

The numerical computation of Ca(t) described above would require an impractically long 

computation time if the large raw MIMS data sets, I(t), were used directly since each data point would 

have to be transformed separately. To expedite the transformation, it was determined that without loss 

of precision, I(t) could first be represented by a polynomial function Ifit(t), in which the polynomial 

coefficients were fit with a non-linear regression routine using the Gauss-Newton algorithm with 

Levenberg-Marquardt modifications. Polynomial functions of the 7th degree were found to fit the raw 

MIMS intensity data well. 
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In summary, the approach to estimating Ca(t), from the experimental measurement I(t), involved 

the following steps: 

(a) Fit the raw MIMS data I(t) to a 7th-degree polynomial Ifit(t). 

(b) Establish an initial guess for Ca(t) as Ca(t)guess = σIfit(t). 

(c) Numerically solve Equations (A-12) – (A-15) (see Matlab code below) using Ca(t)guess 

together with Dm and td estimated above. A prediction for Ifit(t), Ifit'(t), was calculated based 

on Equation (A-16). 

(d) A Matlab nonlinear regression routine was applied to iteratively adjust the polynomial 

coefficients of Ca(t)guess and minimize the difference between Ifit(t) and Ifit'(t). One hundred 

and nineteen points were taken from Ifit(t) and Ifit'(t) (one point every 0.25 minutes starting 

from t = 0.5 min) to calculate the sum squared error (SSE). The final result Ca(t) was 

obtained by minimizing SSE. 

The robustness of the entire procedure was assessed in terms of the fraction of variance explained by the 

modeling, R2, for steps (a) and (d) as well as the effects of varying Ca(t)guess, Dm, and td on the resulting 

Ca(t) (see the section entitled ‘Robustness of Ca(t) Estimation Procedure’ below). 

 

Matlab Code of Ca(t) Acquisition 

function [Iprime,beta] = nlinMIMS(t,I,beta0) 
% Iprime = Ifit'(t) 
% beta = polynomial coefficients of resulting Ca(t) 
% t = reaction time 
% I = Ifit(t) 
% beta0 = polynomial coefficient of Ifit(t) as Ca(t)guess 
 
[beta r J] = nlinfit(t,I,'MIMSobs',beta0) 
% Nonlinear regression routine to acquire Ca(t) by minimizing the difference between Ifit'(t) and  
% Ifit(t) 
% r = residuals 
% J = the Jacobian 
% MIMSobs = function that solves the mass transfer model 
 
Iprime = MIMSobs(beta, t) 
% Calculate I'fit(t) based on the estimated Ca(t). 
 
function Iprime = MIMSobs(beta0,t) 
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% Function to solve for I'fit(t) with Ca(t)guess 
% tMIMS = time of MIMS measurements 
 
ri = 0.32 
ro = 0.595 
% ri and ro = inner and outer radii of membrane introduction tubing. 
 
Dm = 3.82/1000000 
td = 0.51 
% Dm = diffusivity in the membrane, mm^2/s 
% td = time to pump reaction solution from reactor to MI probe, min 
% Dm and td must be adjusted for different pH and temperature!!! 
 
tMIMS = t-td 
% tMIMS = time of MIMS measurements 
 
x = linspace(ri,ro,10) 
% Set radial meshes. 
 
m = 1; 
% Setup PDE in cylindrical coordinates. 
 
sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,tMIMS,[],Dm,ri,beta0,td); 
% Solve the PDE. 
 
u = sol(:,:,1); 
% Extract the first solution component as u. 
 
for j = 2:length(t) 
[dummy,I(j)] = pdeval(m,x,u(j,:),ro); 
end 
% Calculate the gradient at ro. 
 
Iprime = (-I*ro*log(ro/ri))' 
% Calculate the flux at ro. 
 
 
function [c,f,s] = pdex1pde(x,t,u,DuDx,Dmm,ri,beta0,td) 
c = 1/Dmm; 
f = DuDx; 
s = 0; 
% PDE setup 
 
function u0 = pdex1ic(x,Dmm,ri,beta0,td) 
if x > ri 
  u0 = 0; 
else 
  u0 = polyval(beta0,td) 
end 
% Initial Conditions 
     
function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t,Dmm,ri,beta0,td) 
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pl = ul-polyval(beta0,t+td) 
ql = 0; 
pr = ur; 
qr = 0;  
% Boundary Conditions 

 

 

Robustness of Ca(t) Estimation Procedures 

The robustness of Ca(t) estimation procedures described above were evaluated by the following 

statistical and sensitivity analyses.  

 

Goodness of Fit of Continuous Function Models of Raw Data 

To assess whether a 7th-degree polynomial is a good representation of the experimental data (step 

(a) above), the fraction of total variation explained by the polynomial model was calculated according to 

the following equation: 
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where 
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= ∑  with the number of data n = 969. For the data shown in Figure 1 in the main text, 

R2 = 0.997. This suggests that 99.7% of the variation about the mean of the MIMS observations can be 

explained by the polynomial Ifit(t), and thus the model provides a close fit. 

 

Goodness of Ca(t) Solution to Mass Transfer Model Prediction of I(t) 

To characterize whether the predicted Ifit'(t), which corresponds to the final Ca(t)guess, is a good 

representation of Ifit(t) (step (d) above), the following correlation coefficient was obtained: 
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where 
( )

( ) fit
fit

I t
I t

n
= ∑  with the number of data n = 119. For the data shown in Figure 1 in the main 

text, R2 was calculated as 0.999 and thus Ifit'(t) was a good representation of Ifit(t). 

 

Effects of Initial Guess on Resulting Ca(t)  

The robustness of the numerical solution to Equations (A-12) – (A-15) for Ca(t) depends in part on 

whether the solution is independent of the initial guess for Ca(t). Original initial guesses for Ca(t) values 

were obtained by using the fitted polynomial function for the raw data, I(t), i.e., Ca(t)guess = σIfit(t) (step 

(b) above). Two extreme initial guess cases were then tested to determine the independence of the 

solution to the initial guess. The two cases were designed by either multiplying or dividing the 

polynomial coefficients in the original Ifit(t) function by 4, respectively. Time profiles of the original 

guess and two extreme guess cases are plotted as Ca(t)guess/σ in Figure A-3(a). The labels ‘high guess’ 

and ‘low guess’ cases in this plot correspond to the functions obtained with largest and smallest 

polynomial coefficient sets. The numerical solution results with all three guess profiles were found to 

yield essentially the same solution for Ca(t), as shown in Figure A-3(b).  
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Figure A-3.  (a) The original and two extreme initial guesses used to solve for Ca(t)/σ. (b) Ca(t)/σ 

obtained with the guesses in (a). This is the same example as shown in Figure 1 in the main text. 
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Effects of Dm and td on Resulting Ca(t)  

The sensitivity of the Ca(t) estimates to two other parameters, the diffusion coefficient in the 

MIMS membrane, Dm, and the initial time needed to pump reaction solution from the reactor to the 

membrane, td, was also investigated.  

Around pH 7, the two parameters were estimated using CNCl standards (one example is shown in 

Figure A-2(a)) as: 

Dm = 3.66(±0.16)×10-10 m2/s   (A-19) 

 td = 30.6(±0.6) s    (A-20) 

For the experiment shown in Figure 1 in the main text, estimates of Ca(t) were obtained using upper and 

lower limit values of Dm and td. The upper and lower limit values were based on the values in (A-19) 

and (A-20) plus or minus 3 times their standard deviations, respectively. These ranges for Dm and td 

should ideally cover 99% of their possible variation, provided they have a normal distribution. Analyses 

similar to those used to assess the sensitivity of Ca(t) to Ca(t)guess, were used to evaluate the sensitivity 

of Ca(t) to variations in Dm and td, as shown in Figure A-4. These comparisons demonstrate that 

estimates of Ca(t) were not sensitive to changes in the parameters over their expected variation ranges. 
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Figure A-4.  (a) Ca(t)/σ obtained with Dm = 3.66(±0.16)×10-10 m2/s. (b) Ca(t)/σ obtained with td = 

30.6(±0.6) s. This is the same example as shown in Figure 1 of the main text. 
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Derivation of Equations (20) and (22) in Main Text 

1. Derive expression for [CNCl]f as a function of time, t. 

a. Derive expression for total N,N-dichloroglycine concentration as a function of t. 

Since at pH 4 – 8 

[Cl2-Gly]T = [NCl2CH2COOH] + [NCl2CH2COO-]   (B-1) 

the rate of change of total N,N-dichloroglycine concentration is due to the first-order decay of 

NCl2CH2COOH and NCl2CH2COO-: 

-2 T
1 2 2 2 2 2

[Cl -Gly] [NCl CH COOH] [NCl CH COO ]d k k
dt

= − −   (B-2). 

The concentrations of the two N,N-dichloroglycine species are related by the following acid 

dissociation equilibrium: 
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Together with the mass balance Equation (B-1), the above equation gives: 
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Substitution of Equations (B-4) and (B-5) into Equation (B-2) gives: 
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k K kd
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At any given pH, integrating the above equation gives: 
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where [Cl2-Gly]T,o is the initial concentration of total N,N-dichloroglycine. Therefore, 
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b. Derive expression for the proposed intermediate concentration, [X], as a function of t. 

Since 

- *
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Substitution of Equation (B-8) into the above equation gives: 
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Integrating the above equation gives: 
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c. Derive expression for [CNCl]f as function of t. 

By the proposed mechanism (see Reactions (17) and (18) of the main text):  

2
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Substitution of Equation (B-11) in the above equation gives: 
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Integrating the above equation gives: 
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as in Equation (16) of the main text, and applying this definition in Equation (B-14) gives: 
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2. Derive expressions for θ (i.e., Equation (22) of the main text) and final form of 
[CNCl]

[CNCl]
f

f ,max

 as a 

function of t (i.e., Equation (20) in the main text).  

When t → ∞, Equation (B-16) becomes: 
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Applying Equations (10) and (11) of the main text, 
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o

θ =  and [Gly]o = [Cl2-Gly]T,o, and 

using Equation (B-17), 
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Substituting Equation (B-15) into Equation (B-18) gives: 
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  (B-19). 

This is equation (22) in the main text. The final expression of [CNCl]f as a function of t, as given by 

Equation (20) in the main text, can also be derived directly by substituting the results from 

Equations (B-16) and (B-17) into the left hand side of Equation (20), i.e., 
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(B – 20).

 

 

 

 

 

 

 

 

 



Dependence of k2
* on Free Chlorine Concentration and pH 
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Figure C-1.  (a) Dependence of k2
* on free chlorine concentration at pH 5.01(±0.04). (b) Dependence of 

k2
* on pH at 25oC.  

 

Dependence of k2
* on Temperature 

 

-8

-7

-6

-5

-4

-3

0.0032 0.0033 0.0034 0.0035
 

( ) ( )
4

*
2

1.0 0.3 10
ln 27 10k

T
± ×

= − + ±  

ln
 k

2*  (s
-1

) 

R2 = 0.99 

    1/Temperature, T-1 (K-1) 

Figure C-2.  Temperature dependence of k2
* in the form of a linearized Arrhenius equation. 
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Notations 

α   partition coefficient between aqueous solution and the membrane, unitless. 

τ   time interval between MIMS measurements, seconds [s]. 

σ  ln( / )
2

o i

m

r r
l Dπ ϕτ α

, calibration coefficient, micro molar per ion count [M⋅(ion count)-1]. 

σ*  Taft constant, unitless. 

ϕ  mass spectrometer multiplier current gain, unitless. 

ωn  the roots of U0(riωn) = 0, unitless. 

[Cl2]T  concentration of total free chlorine, molar [M]. 

[Cl2-Gly]T concentration of total N,N-dichloroglycine, molar [M]. 

[Cl2-Gly]T,o initial concentration of total N,N-dichloroglycine, moler [M]. 

[CNCl]d hypothetical concentration of CNCl that decayed by OCl--catalyzed hydrolysis, molar 

[M]. 

[CNCl]f ‘cumulative’ concentration of cyanogen chloride formed, molar [M]. 

[CNCl]f,max maximum value of [CNCl]f, molar [M]. 

[Gly]  glycine concentration, molar [M]. 

[Gly]o  initial glycine concentration, molar [M]. 

[H+]  proton concentration, molar [M]. 

[NCl=CHCOO-] concentration of N-chloromethylimine, molar [M]. 

[NCl2CH2COOH]  concentration of neutral N,N-dichloroglycine, molar [M]. 
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[NCl2CH2COO-] concentration of carboxylate N,N-dichloroglycine, molar [M]. 

[OCl-]  concentration of hypochlorite, molar [M]. 

C  concentration in MIMS membrane, molar [M]. 

Ca  concentration in aqueous solution, molar [M]. 

Ca(t)  time profile of aqueous concentration, molar [M]. 

Ca(t)guess initial guess of Ca(t), molar [M]. 

Ca(t)n  nth estimate of Ca(t), molar [M]. 

C'  C
ασ

, normalized concentration in MIMS membrane, ion counts [ion counts]. 

CH2=NCl N-chloromethylimine. 

CNCl  cyanogen chloride. 

Dm  diffusion coefficient in MIMS membrane, meters squared per second [m2/s]. 

Gly  glycine. 

I ion abundance on the MIMS side, ion counts [ion counts]. 

ICNCl ion abundance of CNCl on the MIMS side, ion counts [ion counts]. 

2CH =NClI  ion abundance of CH2=NCl on the MIMS side, ion counts [ion counts]. 

2CH =NCl, oI   extrapolated to time zero, ion counts [ion counts]. 
2CH =NClI

Iss   I when t → ∞, ion counts [ion counts]. 

I(t)  raw data of MIMS measurements, ion counts [ion counts]. 
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I'(t)  MIMS intensity time profile calculated based on Ca(t), ion counts [ion counts]. 

Ifit(t)  7th-degree polynomial fit of I(t), ion counts [ion counts]. 

Ifit'(t) 7th-degree polynomial representing MIMS intensity time profile calculated based on 

Ca(t)guess or Ca(t), ion counts [ion counts]. 

J0  Bessel function of the first kind of zeroth order, unitless. 

k1  first order rate constant for neutral N,N-dichloroglycine decay, per second [s-1]. 

k1
*  first order rate constant for N-chloromethylimine decay, per second [s-1]. 

k2  first order rate constant for anionic N,N-dichloroglycine decay, per second [s-1]. 

k2
*  first order rate constant for N-chloroiminocarboxylate decay, per second [s-1]. 

kobs  pseudo first order rate constant, per second [s-1]. 

kOCl second order rate constant for CNCl decay due to hypochlorite-catalyzed hydrolysis, per 

molar per second [M-1s-1]. 

Ka1   ionization constant of anionic N,N-dichloroglycine, molar [M]. 

Ka2   ionization constant of neutral N,N-dichloroglycine, molar [M]. 

l   length of tubular MIMS membrane, meters [m]. 

n  integer, unitless. 

r  radius from the center of tubular MIMS membrane, meters [m]. 

ri  inner radius of tubular MIMS membrane, meters [m]. 

ro   outer radius of tubular MIMS membrane, meters [m]. 

t  reaction time, seconds [s]. 
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T  absolute temperature, Kelvin [K]. 

td time to pump reaction solution from reactor to MIMS membrane, seconds [s]. 

U0  J0Y0 – J0Y0, unitless. 

X primary intermediate of carboxylate N,N-dichloroglycine decay. 

Y0  Bessel function of the second kind of zeroth order, unitless. 
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