Highly Active Layered Double Hydroxide-Derived Cobalt Nano-Catalysts for *p*-Nitrophenol Reduction

Hanyu Ma,^{a,†} Haitao Wang,^{a,†} Tong Wu,^a and Chongzheng Na^{a,b,*}

^a Department of Civil and Environmental Engineering and Earth Sciences,

University of Notre Dame, Notre Dame, IN 46556, USA

^b Department of Civil, Environmental, and Construction Engineering,

Texas Tech University, Lubbock, TX 79409, USA

Corresponding Author:

*Corresponding authors: chongzheng.na@gmail.com.

Author Contributions:

[†]These authors contributed equally.

Figure S1. TEM and FFT of layered double hydroxide. Scale bars: a, 10 nm; b, 2 nm⁻¹.

Figure S2. TEM of a LDO-Co disk. Scale bar: 500 nm.

Figure S3. A representative normal distribution of LDO-Co diameter. Sample: cobalt molar percentage, 15%.

Figure S4. Dependence of pseudo first order rate constant (*k*) on cobalt loading. Experimental conditions: cobalt molar percentage, 28%; nanoparticle diameter, $11.1(\pm 4.9)$ nm; *p*-nitrophenol, 0.2 mM. The linear correlation confirms that the reduction of p-nitrophenol catalyzed by LDO-Co is not limited by mass transfer.

Figure S5. XRD of LDO-Co before and after reaction.

Catalyst	NP size (nm)	$C_{\rm DND}$ (mM)	$\frac{k \text{ (min}^{-1} \text{ g}^{-1} \text{ L})}{k \text{ (min}^{-1} \text{ g}^{-1} \text{ L})}$	TOF^* (min ⁻¹)	Reference
	<u>6 9 11 1</u>		$\frac{k(\min 5 L)}{962}$	0.72	This study
C0/LDO	0.8-11.1	0.20	80.5	0.72	This study
$Co(OH)_2$	nanosheets	0.125	1.77	0.009	[1]
Co/RGO	8 ± 1	0.096	0.82	0.0033	[8]
Co-HCP/RGO	90	0.096	1.10	0.0045	[9]
Co/hydrogel	100	0.72	0.96	0.029	[10]
Co@SiO ₂	20	0.6	30.8	0.78	[11]
Co_3O_4	-	5	0.25	0.053	[12]
Pd/dendrimer	2.4±0.5	0.1	6875	52.8	[2]
Pd/R5 peptide	2.6±0.5	0.057	189	1.45	[4]
Pd/Al ₂ O ₃	6±1	0.1	622	4.77	[5]
Pd/CNP	3	0.2	608	9.33	[6]

Table S1. Characteristics of the Catalysts Used for the Comparisons in Figure 6

* Turnover frequency was evaluated at 50% conversion.